# Расчет схем питания НУЭ с полупроводниковыми прерывателями тока П.1. Начало расчета

Основными исходными данными для расчета схемы питания НУЭ по схеме тиратрон–импульсный трансформатор–ППТ являются требуемое ускоряющее напряжение и средняя мощность в пучке. Их значения выбираются исходя из требований конкретных РТ к облучаемым изделиям и необходимой производительности (см. главы 4 и 5).

Ускоряющее напряжение  $U_y$  определяет минимальную энергию в импульсе  $W_u$ , которая необходима для получения импульса с требуемым током. Связано это с тем, что у ППТ и вакуумного диода имеются существенные по величине паразитные емкости  $C_n$ , которые необходимо зарядить. При этом, если величина паразитной емкости изменяется не существенно и лежит в пределах 5-10 пФ, то при увеличении ускоряющего напряжения с 200 до 1000 кВ требуемая энергия для зарядки этой паразитной емкости  $W_n$  возрастает с долей до единиц джоуля, что приводит к необходимости увеличения величины минимальной энергии в импульсе  $W_u$  (табл. П.1). Заметим, что запасенная в паразитной емкости энергия  $W_n$ , не теряется, а передается пучку электронов и в некоторых случаях может обострять фронт импульса тока. Таким образом, имея величину  $U_y$  по данным табл. П.1 выбираем значение  $W_u$ , которое носит оценочный характер и может существенно корректироваться при необходимости. Важно отметить, что энергия, переданная в пучок электронов, зависит от многих дополнительных факторов, рассмотренных в главах 2 и 3, и составляет около 25% от  $W_u$ .

Исходя из требуемой средней мощности и найденного значения W<sub>и</sub> находится частота работы НУЭ. Требуемое ускоряющее напряжение и тип диодов определяют количество последовательно и параллельно включаемых в ППТ диодов. Кроме того, количество последних определяется коммутируемым током, т.е зависит от W<sub>и</sub>.

Выбор типа используемых диодов в ППТ определяет значения оптимальной длительности и плотности токов прямой и обратной накачки. Характерные значения параметров диодов в режиме наносекундного обрыва тока (из работы [П.1]) приведены в табл. П.2.

Схема питания НУЭ должна обеспечить требуемые для эффективной работы ППТ условия по соотношению амплитуд (I<sub>0</sub>, I<sub>1</sub>) и длительностей (t<sub>пр</sub>, t<sub>об</sub>)токов прямой и обратной накачки. Известны следующие ограничения [П.1]: закон сохранения заряда (выполняется нестрого) и соотношение амплитуд токов:

250

$$(0,85-0,9) * t_{np} * I_0 = t_{ob} * I_1; при \quad 1 < J^+ < 10 \text{ кA/cm}^2, \tag{\Pi.1}$$

где J<sup>+</sup> - плотность тока прямой накачки;

$$I_1 / I_0 = 3-10.$$
 (II.2)

Таблица П.1. Учет влияния паразитной емкости на параметры импульса

| U <sub>y</sub> , кВ | Сп, пФ | Wп, Дж | W <sub>и</sub> , Дж |  |
|---------------------|--------|--------|---------------------|--|
| 200                 | 6,3    | 0,125  | 1,5                 |  |
| 500                 | 9,5    | 1,18   | 15                  |  |
| 1000                | 12,7   | 6,37   | 60                  |  |

Таблица П.2. Параметры диодов для ППТ

| Тип диода            | Диапазон плотно-<br>стей тока прямой<br>накачки J <sup>+</sup> , кA/см <sup>2</sup> | Диапазон плотно-<br>стей тока обрат-<br>ной накачки J <sup>+</sup> ,<br>кA/cm <sup>2</sup> | Площадь структу-<br>ры S <sub>л</sub> , см <sup>2</sup> | Диапазон времен<br>прямой накачки<br>t <sub>пр</sub> , нс | Диапазон времен<br>обратной накачки<br>t <sub>oб</sub> , нс | Рабочее напряже-<br>ние U <sub>л</sub> , кВ |
|----------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|
| Диоды серии<br>КЦ105 | 10-60                                                                               | 10-60                                                                                      | ~0,02                                                   | 100-200                                                   | 50-100                                                      | 15-30                                       |
| Диоды серии<br>СДЛ   | 1-10                                                                                | 1-10                                                                                       | ~0,2                                                    | 200-800                                                   | 50-200                                                      | 80-160                                      |
| SOS диоды            | 0,4-2                                                                               | 2-10                                                                                       | 0,25-4                                                  | 300-600                                                   | 40-150                                                      | 60-250                                      |

Таблица П.3. Параметры импульсных тиратронов [П.2,П.3]

| Тип          | Напряжение<br>анода, кВ | Ток ано-<br>да, кА | Средний<br>ток, А | Pecypc                | Частота ра-<br>боты, Гц |
|--------------|-------------------------|--------------------|-------------------|-----------------------|-------------------------|
| ТГИ1-1000/25 | 25                      | 1                  | 1                 | ≥500 ч                | 700                     |
| ТГИ1-2000/35 | 35                      | 2                  | 3                 | ≥1000 ч               | 330                     |
| ТГИ1-2500/50 | 50                      | 2,5                | 4                 | ≥1000 ч               | 400                     |
| ТГИ1-5000/50 | 50                      | 5                  | 10                | ≥1000 ч               | 125                     |
| ТП2-10к/25   | 25                      | 10                 | 0,5               | ≥1*10 <sup>6</sup> Кл | 2000                    |
| ТП2-10к/50   | 50                      | 10                 | 0,35              | ≥1*10 <sup>6</sup> Кл | 2000                    |
| ТП-5к/100    | 100                     | 5                  | 0,5               | ≥1*10 <sup>6</sup> Кл | 500                     |
| ТД-150к/25   | 25                      | 150                | 0,5               | ≥5*10 <sup>5</sup> Кл | 50                      |
| ТД-50к/25    | 45                      | 50                 | 0,25              | ≥5*10 <sup>5</sup> Кл | 50                      |

Дальнейшая методика расчета состоит в следующем:

1) расчет параметров контуров прямой и обратной накачки ППТ;

2) расчет параметров импульсного трансформатора;

3) определение конструкционных параметров элементов схемы.

4) корректировка расчета с учетом имеющихся номиналов используемой элементной базы.

## П.2. Расчет параметров контуров прямой и обратной накачки ППТ

Исходя из требования о минимальной энергии в импульсе  $W_u$  (табл. П.1), определяем энергию  $W_{C1}$  в конденсаторе обратной накачки C1 (рис.1.3) с учетом потерь на коммутацию:

$$W_{C1} = 1,2 * W_{H}, \qquad (\Pi.3)$$

Принимая коэффициент перенапряжения в диапазоне  $K_n = 2-3$  ( $K_n = U_y/U_{C1}$ ) при использовании диодов типа СДЛ и работе схемы на нагрузку с сопротивлением больше волнового сопротивления контура обратной накачки, емкость конденсатора  $C_{C1}$  определяем так:

$$C_{C1} = 2^* W_{C1} / U_{C1}^2, \qquad (\Pi.4)$$

где U<sub>C1</sub>- напряжение на конденсаторе С1.

Величину индуктивности контура обратной накачки (рис.П.1) рассчитываем из выражения

$$L_1 = (L_{\rm H} + L_k) = 4 * t_{\rm o5}^2 / (\pi^{2*} C_{\rm C1}), \tag{\Pi.5}$$

где L<sub>н</sub> - индуктивность вторичной обмотки ИТ в состоянии насыщения, L<sub>к</sub> - индуктивность высоковольтной части контура.

Затем оцениваем амплитуду тока I<sub>1</sub> в контуре обратной накачки:

$$I_1 = U_{C1} / (L_1 / C_{C1})^{0.5}. \tag{\Pi.6}$$

Величину энергии  $W_{C0}$  в конденсаторе прямой накачки C0 (см. рис. П.1), с учетом потерь энергии в сердечнике импульсного трансформатора при времени ввода энергии до 500 нс достигающих 25%, можно найти в виде

$$W_{C0} = (1, 2 - 1, 3) * W_{C1} . \tag{\Pi.7}$$

Исходя из рабочего напряжения используемого тиратрона (табл. П.3 [П.2,П.3]), находим емкость конденсатора C0:

$$C_{\rm C0} = 2^* \, {\rm W}_{\rm C0} / \, {\rm U}_{\rm C0}^{2}; \tag{\Pi.8}$$

где U<sub>C0</sub>- напряжение на конденсаторе C0 (рабочее напряжение на тиратроне).

Время прямой накачки ППТ (см. рис. 1.3) определяем из соотношения

$$t_{\rm np} = \pi^* (\kappa^{2*} L_{\rm K} + L_{\rm s})^* C_{\rm C0} / 2)^{0.5} . \tag{\Pi.9}$$

При этом величину индуктивности низковольтной части контура прямой накачки (в основном это индуктивность рассеяния импульсного трансформатора) можно задать на уровне  $L_s \sim 1$  мкГ. Полученное значение времени прямой накачки должно находиться в требуемом диапазоне (см. табл. П.2).

Заметим, что основным параметром, позволяющим вернуться, при необходимости, в границы диапазона времен прямой накачки является U<sub>C0</sub>.

Затем оцениваем амплитуду тока I<sub>0</sub> в контуре прямой накачки:

$$I_0 = 0.95 * U_{C0} / (2 * L_s / C_{C0})^{0.5}.$$
(II.10)

Исходя из величины допустимой плотности тока прямой накачки J<sup>-</sup> (см. табл. П.2) находим количество параллельных цепей N<sub>пц</sub> из диодов в ППТ и количество диодов N<sub>пд</sub> в каждой цепи:

$$N_{ng} = U_y / U_g; N_{ng} = I_1 / (J^{-*}S_g).$$
 (II.11)

Анализ схем прямой и обратной накачки ППТ (см. рис. П.1) позволяет найти ограничения для рассматриваемой схемы питания НУЭ на соответствие соотношениям (П.1),(П.2):

~ -

$$I_1/I_0 = (2^*(L_K + L_s)/(L_H + L_s))^{0.5};$$
 (II.12)

$$t_{oo}/t_{np} = \kappa^* (2^* (\kappa^2 L_K + L_s) / (L_H + L_s))^{0.5}; \qquad (\Pi.13)$$

$$(t_{np} * I_0)/(t_{oo} * I_1) = 0,5 * \kappa,$$
 (II.14)

где к=  $U_{C1}/U_{C0}$  – коэффициент трансформации ИТ. Таким образом, закон сохранения заряда (П.1) будет точно соблюдаться (из П.14) при к~2, а соотношение амплитуд токов (П.2) при –  $L_s/L_H > 1$  (при  $L_K << L_s$ ).

Полученные соотношения позволяют оценить только возможные диапазоны соотношений элементов рассматриваемой схемы питания НУЭ с ППТ, так как работа прерывателя не требует точного соблюдения закона сохранения заряда и при выводе соотношений (П.12)-(П.14), как впрочем, и во всей методике расчета контуров, не учитывалось сопротивление ППТ в режиме прямой накачки. Влияние сопротивление ППТ существенно именно в режиме прямой накачки, поскольку величина импеданса контура существенно меньше, чем при обратной накачке.



Рис. П.1 Схемы расчета ускорителя серии УРТ: а) – для прямой накачки ППТ, б) –для обратной накачки ППТ: C0 и C1 -конденсаторы прямой и обратной накачки, к – коэффициент трансформации ИТ, L<sub>к</sub>, L<sub>н</sub> - индуктивности высоковольтной части контура обратной накачки и вторичной

-индуктивности высоковольтной части контура ооратной накачки и вторичн обмотки ИТ в состоянии насыщения, L<sub>s</sub> – индуктивность рассеяния ИТ

#### П.3. Расчет параметров импульсного трансформатора

После выполнения расчета параметров контуров прямой и обратной накачки ППТ появляются все необходимые данные для расчета параметров импульсного трансформатора (ИТ). Методика полного расчета ИТ приведена в [П.4,П.5], поэтому рассмотрим только основные этапы расчета ИТ.

Основным соотношением, для расчета ИТ является

$$S_{cep} * n_2 = U_{C1} * t_{np} / 2*\Delta B,$$
 (II.15)

где  $S_{cep}$  – площадь поперечного сечения сердечника ИТ;  $n_2$  – число витков вторичной обмотки ИТ;  $\Delta B \approx 2 B_s$  – максимальное приращение индукции;  $B_s$  - магнитная индукция насыщения материала сердечника.

Главное ограничение, возникающее при расчете ИТ, состоит в том, что величина индуктивности вторичной обмотки ИТ в состоянии насыщения L<sub>н</sub> должна быть меньше индуктивности высоковольтной части контура обратной накачки L<sub>к</sub>, поскольку в ее величину входят также конструкционные индуктивности диодов ППТ и конденсатора С1. Однако, величина конструкционных индуктивностей, как правило, существенно меньше L<sub>н</sub>, значение которой оцениваем из формулы

$$L_{\rm H} = \mu_0 * \mu_{\rm H} * S_{\rm OE} * n_2^2 / l_{\rm s}; \qquad (\Pi.16)$$

где µ<sub>0</sub>– магнитная проницаемость вакуума; µ<sub>H</sub> – магнитная проницаемость сердечника в положении замкнуто (определяется экспериментально, находится в диапазоне 1,5-2,5); S<sub>OF</sub> – площадь поперечного сечения вторичной обмотки ИТ; l<sub>s</sub> – длина средней силовой линии магнитного поля.

Основными параметрами, позволяющими вернуться в границы требуемого диапазона значений  $L_{\rm H}$  являются  $S_{\rm OE}$ ,  $n_2$  и  $l_{\rm s}$ .

Величина  $S_{Ob}$  складывается из величины  $S_{cep}$  и величины зазора на изоляцию между сердечником и вторичной обмоткой ИТ. Если сердечник ИТ не заземлен, то он находится под потенциалом равным  $U_{C1}/2$  [П.4], и изоляцию необходимо рассчитывать на эту величину. При субмикросекундных временах воздействия и частотном режиме работы рабочая напряженность электрического поля в трансформаторном масле составляет (при двукратном запасе) около 50-70 кВ/см [П.4]. При расчете  $S_{Ob}$  необходимо учитывать, что значение  $S_{cep}$  относится к материалу сердечника. Реальный сердечник наматывается из ленты, и его объем необходимо увеличить на толщину слоя межслойной изоляции (20%) и учесть неплотность намотки (5%). Если сердечник состоит из нескольких дисков, то необходимо учитывать и зазор между дисками (обычно 3-5 мм) на теплоотвод.

Значение  $n_2$  определяется из коэффициента трансформации ИТ (из выражения (1.6) и числа витков первичной обмотки  $n_1$ , изменение которой незначительно ( $n_1$ =1-3). Для уменьшения индуктивности рассеяния ИТ первичную обмотку необходимо выполнять так, чтобы она пересекала не менее 1/3 вторичной.

Значение  $l_s$  прежде всего определяется необходимостью обеспечить требуемую изоляцию между витками вторичной обмотки на внутренней поверхности ее каркаса. При субмикросекундных временах воздействия и частотном режиме работы рабочая напряженность электрического поля в трансформаторном масле по поверхности диэлектрика с близкой диэлектрической проницаемостью (оргстекло) и с учетом неоднородностей электрического поля, возникающих в промежутке, составляет, по нашим эмпирическим данным, около 5 кВ/см. Существенное увеличение  $l_s$  нежелательно, так как приводит к увеличению объема сердечника и, соответственно, потерь в нем.

Удельные потери в сердечнике W<sub>C</sub> связаны с потерями на перемагничивание, которые определяются соотношением

$$W_{\rm C} = \Delta B^* (2^* H_{\rm c} + 2^* B_{\rm s} * \sigma^2 / (12^* \rho^* t_{\rm np}), \qquad (\Pi.17)$$

где H<sub>c</sub> - коэрцитивная сила, σ и ρ - толщина и удельное сопротивление материала сердечника (Таблица П.5).

Удельные потери в сердечнике уменьшаются при использовании для его изготовления более тонкой ленты и увеличиваются при уменьшении длительности импульса.

К моменту начала работ наиболее широкое применение находили сердечники из пермаллоя 50НП толщиной 10-20 мкм и шириной ленты 10-25 мм, из которых можно изготавливать сердечники с рабочими частотами до 1000 Гц и более. В настоящее время все более широкое применение находят сердечники из аморфных сплавов.

| Марка стали | В <sub>s</sub> , Тл | р*10 <sup>-6</sup> , Ом*м | σ, мм | H <sub>c</sub> ,А/м |
|-------------|---------------------|---------------------------|-------|---------------------|
| 50 НП       | 1,5                 | 0,45                      | 0,05  | 24                  |
| 50 НП       | 1,5                 | 0,45                      | 0,02  | 36                  |
| 50 НП       | 1,47                | 0,45                      | 0,01  | 40                  |
| 34НКМП      | 1,55                | 0,52                      | 0,02  | 20                  |
| 34НКМП      | 1,55                | 0,52                      | 0,01  | 52                  |
| 34НКМП      | 1,55                | 0,52                      | 0,005 | 52                  |

Таблица П.5. Параметры ферромагнитных материалов [П.4,П.6]

Таблица П.6. Параметры импульсных конденсаторов [П.7]

| Исполнение | рабочее<br>напряжение, кВ | емкость, пФ | Длина, см | диаметр, см | Объем, см <sup>3</sup> | Запасаемая<br>энергия, Дж | Плотность энер-<br>гии, Дж/дм <sup>3</sup> | Количество для<br>накопления<br>100 Дж, шт. |
|------------|---------------------------|-------------|-----------|-------------|------------------------|---------------------------|--------------------------------------------|---------------------------------------------|
|            | 12                        | 3300        | 1,9       | 6,3         | 59,20                  | 0,24                      | 4,01/2,99*                                 | 421                                         |
| VDU 2p     | 12                        | 4700        | 2,2       | 7,5         | 97,14                  | 0,34                      | 3,48/2,71*                                 | 296                                         |
| NDI1-2R    | 12                        | 6800        | 2,2       | 9           | 139,89                 | 0,49                      | 3,50/2,83*                                 | 204                                         |
|            | 10                        | 3300        | 1,8       | 5           | 35,33                  | 0,17                      | 4,67/3,24*                                 | 606                                         |
| КВИ-3б     | 12                        | 2200        | 1,8       | 5           | 35,33                  | 0,16                      | 4,48/3,11*                                 | 631                                         |
|            | 16                        | 1000        | 2         | 4           | 25,12                  | 0,13                      | 5,10/ <b>3,26</b> *                        | 781                                         |
|            | 10                        | 680         | 1,7       | 2,5         | 8,34                   | 0,03                      | 4,08/2,08*                                 | 2941                                        |
| КВИ-За     | 12                        | 470         | 1,9       | 2,5         | 9,32                   | 0,03                      | 3,63/1,85*                                 | 2955                                        |
|            | 16                        | 470         | 2,1       | 2,5         | 10,30                  | 0,06                      | <b>5,84</b> /2,98*                         | 1662                                        |
|            | 20                        | 680         | 2.8       | 3.6         | 28.49                  | 0 14                      | 4 77/2 92*                                 | 735                                         |

\* С учетом изоляции между секциями конденсаторов

## П.4. Определение конструкционных параметров элементов схемы

Существенное влияние на параметры, конструкцию и эксплуатационные характеристики НУЭ с системой питания по схеме тиратрон – импульсный трансформатор – ППТ оказывают и другие элементы высоковольтных контуров, а именно тиратроны и высоковольтные конденсаторы.

Параметры выпускаемых промышленностью (НИИ ГП «Плазма», ООО "Импульсные технологии") импульсных тиратронов (см. табл. П.3) находятся в широком диапазоне значений. Определяющими при выборе тиратрона являются напряжение и ток анода, значения которых даны в табл. П.3. Однако, кроме основных параметров, приведенных в табл. П.3, существенное значение при конструировании имеют дополнительные параметры, такие как величина тока накала (например, у тиратронов серии ТГИ1 находится в диапазоне от 25 до 80А, а у серии ТП2 составляет 2,5А), амплитуда импульса запуска, схема включения тиратрона, стоимость. Отметим, что по комплексу свойств в настоящее время лидерами являются тиратроны серии ТП2, несмотря на более сложную схему включения.

Конденсаторы C0 и C1 конструктивно выполняются из высоковольтных конденсаторов, выпускаемых промышленностью. Для получения требуемого значения рабочего напряжения они собираются последовательно в секции, которые для достижения требуемой емкости включаются параллельно. Исходя из требования простоты комплектации при изготовлении и ремонте системы питания НУЭ желательно использовать один тип и номинал конденсаторов.

К конденсаторам предъявляются достаточно жесткие требования по параметрам допустимых режимов: полный разряд за время  $t_{np}$  (100-800 нс), частота работы не менее 700 Гц и ресурс не менее 5 000 ч.

В настоящее время, из выпускаемых в России [П.8], для этой цели пригодны высоковольтные керамические конденсаторы типа КВИ-3 (табл. П.6). Несмотря на то что наибольшей плотностью запасаемой энергии обладают конденсаторы КВИ-3а-16кВ-470пФ их применение в системах питания НУЭ нецелесообразно. Как уже отмечалось выше, конденсаторы прямой и обратной накачки набираются из секций. Учет необходимости создания изоляционного промежутка между секциями конденсаторов (~5мм) приводит к существенному изменению картины (см. табл. П.6) - наибольшая плотность запасаемой энергии у конденсаторов КВИ-3б-16кВ-1000пФ. Но еще важнее тот факт, что диапазон удельной плотности снизился с 40 до 10-15%. Если же учесть требуемое количество конденсаторов для построения накопителя энергии на 100 Дж, то из-за трудоемкости соединения конденсаторов в секции, удобства обслуживания и замены секций при ремонте наиболее целесообразно использование конденсаторов КВИ-3в.

Из зарубежных конденсаторов хорошие характеристики имеют конденсаторы типа DHS японской фирмы «Murata»[П.9]. Для набора высоковольтный секций прекрасно подходят конденсаторы DHS4E4G202KTZB (40кB, 2000пФ).

Результаты расчета систем питания ускорителей с ППТ по описанной методике приведены в табл. П.7.

258

| Парацестр                                                                     | Группа ускорителя |       |       |  |
|-------------------------------------------------------------------------------|-------------------|-------|-------|--|
| параметр                                                                      |                   | 2     | 3     |  |
| Ускоряющее напряжение U <sub>у</sub> , кВ                                     | 200               | 500   | 1 000 |  |
| Мощность источника высокого напряжения, кВт                                   | 0,432             | 4,32  | 4,32  |  |
| Минимальная энергия в импульсе W <sub>и</sub> , Дж                            | 1,5               | 15    | 60    |  |
| Частота работы, Гц                                                            | 200               | 200   | 50    |  |
| Энергия в конденсаторе обратной накачки W <sub>C1</sub> , Дж                  | 1,8               | 18    | 72    |  |
| Коэффициент перенапряжения К <sub>п</sub>                                     | 2                 | 2     | 2     |  |
| U <sub>C1</sub> - напряжение на конденсаторе С1, кВ                           | 100               | 250   | 500   |  |
| Емкость конденсатора С1, нФ                                                   | 0,36              | 0,576 | 0,576 |  |
| Время обратной накачки t <sub>об</sub> , нс                                   | 60                | 70    | 80    |  |
| Индуктивности контура обратной накачки L <sub>1</sub> , мкГн                  | 4,06              | 3,45  | 4,5   |  |
| Волновое сопротивление контура обратной накачки, Ом                           | 106               | 77,4  | 88,5  |  |
| Амплитуда тока в контуре обратной накачки I <sub>1</sub> , кА                 | 0,94              | 3,3   | 5,65  |  |
| Плотность тока в контуре обратной накачки J <sup>-</sup> , кА/см <sup>2</sup> | 4,71              | 16,15 | 28,26 |  |
| Энергии в конденсаторе прямой накачки W <sub>C0</sub> , Дж                    | 2,16              | 21,6  | 86,4  |  |
| Рабочее напряжение тиратрона, кВ                                              | 25                | 25    | 50    |  |
| Емкость конденсатора С0, нФ                                                   | 6,91              | 69,1  | 69,1  |  |
| Индуктивности контура прямой накачки L <sub>к</sub> , мкГн                    | 1,5               | 1,5   | 2     |  |
| Время прямой накачки t <sub>пр</sub> , нс                                     | 226               | 715   | 826   |  |
| Волновое сопротивление контура прямой накачки, Ом                             | 20,8              | 6,59  | 7,61  |  |
| Амплитуда тока в контуре прямой накачки I <sub>0</sub> , А                    | 190               | 360   | 624   |  |
| Рабочее напряжение используемых диодов U <sub>д</sub> , кВ                    | 125               | 125   | 125   |  |
| Количество диодов в цепи N <sub>пд</sub>                                      | 2                 | 4     | 8     |  |
| Плотность тока в контуре прямой накачки J <sup>+</sup> , кA/см <sup>2</sup>   | 0,95              | 1,8   | 3,12  |  |
| Площадь диода S <sub>д</sub> , см <sup>2</sup>                                | 0,2               | 0,2   | 0,2   |  |
| Рабочая плотность обратного тока в ППТ, кА/см <sup>2</sup>                    | 5                 | 5     | 5     |  |
| Количество параллельных цепей N <sub>пц</sub>                                 | 1                 | 3     | 6     |  |
| Заряд обратной накачки t <sub>об</sub> * I <sub>1</sub> , мкКл                | 56,5              | 226   | 452   |  |
| Заряд прямой накачки t <sub>пр</sub> * I <sub>0</sub> , мкКл                  | 43                | 258   | 515   |  |
| Отношение амплитуд токов I <sub>1</sub> /I <sub>0</sub>                       | 5                 | 9     | 9     |  |
| Коэффициент умножения ИТ                                                      | 6                 | 10    | 10    |  |

Таблица П.7. Результаты расчета систем питания ускорителей с ППТ

### Список литературы к приложению

П.1 46. Рукин С.Н. . Генераторы мощных наносекундных импульсов с полупроводниковыми прерывателями тока //ПТЭ. 1999. № 4. С.5-36.

П.2 55. Кацнельсон Б.В., Калугин А.М., Ларионов А.С. Электровакуумные электронные и газоразрядные приборы: Справочник. М.: Радио и связь, 1985.

П.3 84. Бочков В.Д., Королев Ю.Д., Франк К.Ф. и др. Псевдоискровые разрядники для схем питания импульсных лазеров// Изв. вузов. Физика. 2000. №5. С.97-105.

П.4 60. ВдовинС.С. Проектирование импульсных трансформаторов. Л.:Энергия, 1971,148С.

П.5 83. Мешков А.Н. Магнитные генераторы мощных наносекундных импульсов //
ПТЭ. 1990. №1. С.23-37.

П.6 88. Крупногабаритные ленточные магнитопроводы // НИИВН при ТПУ, Томск, 1986.

П.7 94. Электрические конденсаторы и конденсаторные установки: справочник // под ред. Г.С. Кучинского. М.: Энергоатомизат, 1987. 656 С.

Π.8 http://www.komi.com/Progress/product/capacitor/

Π.9 http://www.murata.com/